
J .  Fluid Mech. (1984), vol. 147, p p .  373-395 

Printed in Great Britain 
373 

Resonant oscillations of inviscid charged drops 
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Moderate-amplitude axisymmetric oscillations of charged inviscid drops held together 
by surface tension are calculated by a multiple-timescale expansion. The corrections 
to the drop shape and velocity caused by mode coupling at  second order in amplitude 
are predicted for two-, three- and four-lobed motions of drops with net charge up to 
the Rayleigh limit &, = 4 d .  Resonant oscillations between four- and six-lobed 
motions occur for total charge values near Q, E (YE)+ and are analysed. Both 
frequency and amplitude modulation of the oscillation are predicted for drop motions 
starting from general initial deformations. 

1. Introduction 
The dynamic response of liquid drops held together by surface tension and with 

electrical charge is important in a great variety of applications. The motion of such 
drops has been studied in physical systems ranging in size from millimetre raindrops 
(Brazier-Smith et al. 1971 ; Tsang 1974) and micron-sized spheres produced by fuel 
atomizers and ink-jet delivery systems (Williams 1973) to the femtometre drops used 
as models for nuclear fission (Cohen & Swiatecki 1962, 1963; Nix 1972). Rayleigh 
(1882; also see Hendricks & Schneider 1963) was the first to treat the effect of 
electrical charge on nearly spherical drops. By an energy stability analysis applied 
to conducting drops immersed in an insulating medium, Rayleigh calculated the 
frequencies for small-amplitude oscillations of an inviscid drop and established the 
amount of charge necessary to fission the drop. The modes of shape oscillation were 
described by single Legendre polynomials and the levels of charge necessary to 
disrupt the nth mode were given as 

$(n) = 47r[e, aB3(n + 2)]$, n 2 2, (1 .1)  

where (T is the surface tension of the drop, E ,  is the permittivity of the medium and 
R is the radius of the spherical shape. The mode number n corresponds to the number 
of lobes on the deformed drop. The two-lobed form becomes unstable a t  the lowest 
value Q = QP), which markes the absolute stability limit for nearly spherical drops. 

Rayleigh’s pioneering work has been the basis for other analyses of drop dynamics 
which generalize the calculations to include viscosity (Tang & Wong 1974; Hasse 
1975) and charge relaxation due to a dielectric drop and external medium (Saville 
1974). These studies considered only small-amplitude oscillations and values of 
charge below the Rayleigh limit. The finite-difference calculations of Alonso (1974) 
for a slightly viscous drop with volumetrically distributed charge and the finite- 
element calculations of Basaran et aE. (1982) for inviscid drops with surface charge 
are the only studies of nonlinear dynamics for charged drops. Such computations are 
relatively expensive, so that an exhaustive mapping of drop response as a function 
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of the initial drop shape and the net electrical charge has not been undertaken. 
Experiments aboard the Space Shuttle are also planned, but must be even more 
limited in scope because of time restrictions. The use of perturbation analysis to 
guide both the experiments and further calculations is in order. 

I n  this paper we present asymptotic analysis of the moderate-amplitude axisym- 
metric oscillations of an inviscid conducting drop with electrical charge suspended 
in a tenuous insulating medium. The calculations are focused on describing the effect 
of the amplitude of deformation on the form of the oscillation and on describing the 
harmonic resonance between the fundamental motion and secondary modes induced 
by nonlinear interactions. Our analysis is based on the method of multiple timescales 
as applied to  approximating the time-periodic solutions of nonlinear conservative 
differential equations. I n  a previous paper (Tsamopoulos &, Brown 1983 ; henceforth 
referred to  as I), we used the PoincarkLindstedt method to  calculate the dependence 
of the frequency modulations on amplitude for regular oscillations of an inviscid 
uncharged drop. The multiple-scale expansions used here are generalizations of the 
Poincar&Lindstedt technique which allow for both frequency and amplitude 
modulations on timescales that differ from the one associated with the fundamental 
motion. As shown in $3, the two approaches are identical for regular oscillations. The 
multiple-timescale approach affords systematic treatment of the cases of harmonic 
resonance. 

Harmonic resonance has long been known for two- and three-dimensional inviscid 
waves. Wilton (191 5) first demonstrated secondary harmonic resonance in capillary- 
gravity waves and computed the special case of waves of permanent form with a phase 
shift relative to  the fundamental frequency. Bretherton (1964) was the first to solve 
the general equations derived from a multiple-scale expansion which included slow 
amplitude modulation of the waveform. I n  a series of papers McGoldrick (l965,1970b, 
1972) and his collaborators have thoroughly analysed second- and third-order 
resonance in water waves including both surface tension and gravity. Both phenomena 
have been confirmed experimentally (McGoldrick et al. 1966 ; McGoldrick 1970a). 
Phillips (1981) has recently reviewed the rapid developments in the theory of 
nonlinear wave interactions. 

The analysis of nonlinear oscillations and resonance of an isolated drop has 
advantages over the parallel studies for initially planar waves. The natural periodicity 
of the drop’s surfaces results in a discrete spectrum of the fundamental modes as 
described by Rayleigh. For planar water waves the spectrum is continuous in the 
spatial wavenumber and detuning of resonant interactions caused by variation of this 
wavenumber from the critical value for resonance must be considered in both 
experiments and calculations. Also, the formulation of the planar-wave problem 
requires consideration of the variation of this spatial wavelength with the amplitude 
of the oscillation. The general problem of combined wavelength, amplitude and 
frequency modulation for two-dimensional waves is, as yet, unsolved. Again, the 
periodicity of the drop removes the need for incorporating wavelength variation and 
makes the formulationin $4 the most general for this problem. The major disadvantage 
of calculations for an  oscillating drop over the analysis for planar waves is the more 
complex algebra generated by the velocity and electrostatic potentials expressed in 
terms of Legendre polynomials. We have carried out these calculations using the 
symbolic manipulator MACSYMA (Pavelle, Rothstein &, Fitch 1981), which is 
available on the MIT computer system. 

The multiple-timescale expansions valid up to third order in the initial amplitude 
of the deformation are developed in 5 3 and their solutions valid away from resonance 
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are presented. In this section we correct a slight algebraic error in the third-order 
problem made in I and present the emended coefficients for the dependence of 
oscillation frequency for uncharged drops and bubbles on amplitude. I n  $ 4  we analyse 
second-harmonic resonance for charged drops which occurs a t  critical values 0 =- 0,. 
The detuning caused by a slight variation in the total charge from this value is also 
considered. Third-order harmonic resonance which occurs for uncharged drops and 
particular values of 0 is discussed briefly in $5 .  The effect of viscosity on the nonlinear 
interactions predicted by this inviscid analysis is discussed in $ 6 .  

2. Formulation 
We consider the irrotational and incompressible motion of an electrically conducting 

inviscid drop with volume = $R3, density p, surface tension a and net electrical 
charge Q .  The motion of the drop in a tenuous surrounding medium is caused by 
initially introducing a small axisymmetric deformation. As in I, the surface of the 
drop during this motion is described by RF(0, t ) ,  where F(0, t )  is the dimensionless 
shape function of the drop and 0 is the meridional angle in spherical coordinates. 
The same scales employed in I are used to define the dimensional velocity potential 
(aR/p)t$(r,  8 ,  t ) ,  pressure ( 2 a / R )  p ( ~ ,  8, t )  and time (pR3/a)it in terms of their 
dimensionless counterparts. The inviscid equations of motion and boundary 
conditions are 

V2$ = 0 (0 < r < F(8,  t ) ,  0 < 8 < K ) ,  ( 2 .1 )  

Apo+2p+L(T;2 -Te , l )  = -22P ( r  = F(B,t) ,  0 < 8 < R ) ,  4R 

JOE P ( 8 ,  t )  sin 8 d0 = 2 .  

(2 .4 )  

Laplace’s equation (2 .1 )  and Bernoulli’s equation (2 .3 )  describe the velocity and 
pressure everywhere in the drop. Equation (2 .4 )  kinematically relates the motion of 
the surface to the velocity there. The normal-stress balance (2 .5 )  equates the pressure 
differences caused by capillarity and drop motion to the contributions of the normal 
electric stress from inside Ti l  and outside T:, the drop. The reference pressure 
difference Apo in ( 2 . 5 )  is determined by the constraint of constant drop volume ( 2 . 6 ) .  
We absorb the constant of integration G(t) into the time derivative a$/at. As 
explained by Lamb (1932, $227) ,  including this integration constant in (2 .3 )  leads 
to terms constant in space and proportional to t in the velocity potential, but has 
no other effect on the solution to (2.1)-(2.6) because only space derivatives of q5 
appear in these equations. 

The medium surrounding the drop is assumed to be electrically insulating, and the 
dimensionless electrostatic potential V ( r ,  t ,  8) and the uniform potential in the drop 
Vo(t) are both scaled with ( 4 ~ e , / a R ) - : ,  where em is the permittivity of the medium. 
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The electric field is related to  the potential as E = - V V  and is scaled with 
(4nemR/a)-i; the dimensionless net charge Q is scaled with (a4nemR3)-:. The 
equations and boundary conditions governing the electrostatic potentials are 

v2v=0 ( F ( 8 , t ) < ? " < < ,  0 $ 8 < n ) ,  (2.7) 

V = 0  (r+co, 0 < 8 < n ) ,  (2.8) 

-n-VV = 4nq(8, t )  ( r  = F(8,  t ) ,  0 < 8 < n) ,  (2.9) 

t*VV = 0 (T = F ( 6 ,  t ) ,  0 < 8 < n), (2.10) 

(2.11) 

in which q(8, t )  is the local surface charge density and n and t are the unit vectors 
normal and tangential to the drop surface and are defined as 

Fe, - F, e, 
n =  t =  

( F2 + F2,): ' 
Fe, + F, e, 
( F2 + F;)+ 

(2.12) 

In  these equations F, = aF/ae, and (e,, e,) are the unit vectors in spherical coordinates. 
I n  formulating (2.7)-(2.12) we have assumed that charge is confined to the interface 
and equilibrates in a time much shorter than that characteristic of the fluid motion. 
With these assumptions, (2.11) is the charge balance on the interface. Equation (2.11) 
follows from the general conservation equation for a species on a deforming surface 
first derived by Bupara (1965; see also Moeckel 1974) when bulk and surface 
convection are negligible compared with conduction. Then the assumption of 
electrostatic equilibrium follows if the characteristic time for conduction is much 
smaller than the time for a typical drop oscillation, or 

where xo is the resistivity of the drop. For the case of even distilled water 
(xo = lo4 R m2, p = 1 g/cm3, a = 75 dyn/cm) in air (em = 8.8 x F/m) this in- 
equality is satisfied by several orders of magnitude when R = 0.1 em. Equation (2.10) 
guarantees that the tangential component of the electric field is continuous across 
the interface. It is equivalent to the requirement that  the potential be continuous 
across F(8, t ) ,  and sets the constant potential 5. 

The electric stress caused by the external electric field is defined as (Stratton 1941) 

TZ E E - + J E J 2 / ,  (2.13) 

where / is the identity tensor and IEl is the magnitude of E. The component of this 
stress normal to the surface of the drop, 

T:2 E nn: T; = t (n*E)2,  (2.14) 

appears in the normal-stress balance (2 .5)  and couples together the fluid flow and 
electrostatic problems. The spatially uniform potential inside the conducting drop 
forces TY to be zero, hence Te,, = 0. 

The dynamical problem for the velocity and electrostatic potentials and the drop 
shape are solved for motions originating with an initial deformation of the drop. We 
describe initial deformations which satisfy conservation of mass (2.6) and which have 
no initial velocity, i.e. 

i3F 
-(6,0) = 0. 
at 

(2.15) 
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We define the amplitude of the oscillation E in terms of this initial deformation as 

F ( O , O )  = i+E~ , (e )+o(cz ) ,  (2.16) 

where Pn(8) is the Legendre polynomial of nth order. The forms of the initial condition 
(2.16) that  satisfy the volume integral (2.6) up to O(e3)  are 

F(8,O) = 1+ePz(0 ) -~e2-&e3+  ... for n = 2, (2.16a) 

F(0,O) = 1+eP3(8)-+e2-O*e3+.. .  for n = 3, (2.16 b )  

F(8,O) = l + ~ P q ( B ) - + e ~ - & e ~ + . . .  f o r n = 4 .  ( 2 . 1 6 ~ )  

The amplitude e is taken to be a small parameter in the analysis that  follows. 

3. Perturbation solution away from resonance 
We determine the potential fields ( $ ( r ,  8, t ) ,  V ( r ,  8,  t ) )  and drop shape F(8,  t )  for 

moderate-amplitude motions by constructing expansions in the initial amplitude of 
the deformation e. The asymptotic methods couple together the method of multiple 
timescales for freely oscillating non-dissipative systems and the domain perturbation 
technique outlined by Joseph (1973) and used in I to account for changes in the drop 
shape with time and amplitude. Formally, we assume that the dependent variables 
are functions of three timescales related to the actual time as T, = t ,  T,  = et and 
T, = $9. The different timescales are introduced into the field equations by 
expanding the partial derivative a/at as 

a -  a a 
- = -+e-+--+o(e3). 
at aT, aT, 2 aTZ 

The expansion for the domain shape is implemented by 
shape to the unit sphere using the change of coordinates r = 
each dependent variable in a Taylor series 

transforming the drop 
yF(8, t )  and expanding 

where the superscript [k] denotes the kth total derivative of the quantity with res- 
pect to e. As in the development in I, each term in these expansions for the 
potentials can be written as a sum of a contribution based on the spherical domain 
(0 < 7 < 1 ,  0 < 8 < K )  and terms that account for the deformation of the domain a t  
each order of e. The derivatives evaluated on the spherical domain are denoted by 
$(”)(y, 8, T,, T,, T,) = a$(”)/&(”). Because the drop shape F(8,  t )  is independent of the 
radial coordinate, P”~(0 ,  T,, T,, T,) = Fck)(8, T,, T,, T,). Expressions for the total 
derivatives of a potential up to # 2 ] ( q ,  8, T,, T,, T,) are given by equation (14) of I. 

We anticipate the form of the solution to the drop shape and expand 
F(”)(B, T,, T,, Tz) a t  each order as a series of Legendre polynomials: 

m 

F(”)(0,  T,, T,, T,) = E FZ)(O, T,, T,, T,) 
m=o 

m 

= x Sg’(T0, T,, T,) Pm(8). (3.3) 
m-0 
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Using these forms for the corrections to F(0,  t ) ,  the mean curvature of the drop and 
the unit normal and tangent vectors are conveniently expanded in e; the results valid 
up to O(e3) are given in Appendix A. 

The equations governing the zeroth-order contributions from the set (2.1)-(2.16) 
describe a static charged drop and have the solution 

(3.4) 

The arbitrary reference potential V, inside the drop has been set equal to Q. 
The equation set that governs the first-order corrections (F( ' ) ,  $(l), V(l)) is 

vzp) = 0 (0 Q 7 < 1, 0 < 0 < n), (3.5) 

(3.7) 

(3.10) 

(3.11) 

(3.12) 

. 

(3.13) 

F(1)(8,0,0,0) = Pn(@), (3.14) 

~ (0,0, 0 , O )  = 0. 
8% 

aF(l) 
(3.15) 

The pressure and normal electric stress have been eliminated from (3.8) by 
substituting from the first-order forms of Bernoulli's equation and the definition of 
the electric stress tensor. Also, (3.12) is a combination of the conditions for the jump 
in the normal component of the electric field at the interface and the condition for 
conservation of total charge. 

The solutions to (3.5)-(3.15) have the form of the linear-oscillation modes described 
by Rayleigh (1882) cast in the framework of the multiple-scale expansion : 

( 3 . 1 6 ~ )  

(3.16b) 

( 3 . 1 6 ~ )  

p("(0, T,,T1, T,) = Cn(T,,  T,) c o s $ n P n ( 0 ) ,  
n (0) 

n $(1)(7, 0, T,, T,, T,) = - c n ( q ,  T,)= sin 1c.n Pn (6 )  9 

V ( l ) ( y ,  0 ,  T,, T,, T,) = c n ( q ,  T,) q-(n+1) cos 1c.n Pn (0) > 
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where (3.16d) 

and {c,(T,,  T,) ,  h,(T,, T,)} are functions of the slower timescales which are to be 
determined as part of the second-order problem subject to the initial conditions 

c,(O, 0) = 1 ,  hn(O, 0) = 0. (3.17) 

The functions { c , ( q , T , ) }  and {h,(T,,T,)} represent the modulation in the slow 
timescales of the amplitude and frequency of the oscillations, respectively. As noted 
by Rayleigh, drops with net charge less than QP) = [4.n(n+2)$ oscillate with stable 
standing waves, whereas drops with greater charge are unstable and fission. The 
lowest value of Qy) sets the maximum admissible charge on the drop, corresponds to 
n = 2 and is the Rayleigh stability limit Q, = 4d. We consider only drops with net 
charge below this limit. 

The equation set for the second-order terms (+(2), F'(2), F(2))  is cumbersome because 
of the multitude of non-homogeneous terms that are generated by the domain 
perturbation. Because of the relevance of these equations to other analyses of drop 
dynamics we list the set in Appendix B. These equations are solved by expanding 
the two potentials (q5(2) ,  V ( 2 ) )  in series of Legendre polynomials and powers of 7: 

(3.18) 

which satisfy the field equations and boundary conditions, except those on the drop 
surface. The correction to the drop shape is given by (3 .3) .  The displacement condition 
(B 9 )  can be integrated directly with respect to 0 to give V(2) in terms of F(2) and 
lower-order quantities. Substituting this result into (B 3 )  and (B 4 )  and forming the 
integralswith{sin 6Pm(8)}yields asequence of second-order non-homogenousequations 
for the coefficients {y,(T,, T,, T,)}. These are 

1 [ VC2)fq, 6, T,, T,, T,) 1 - z,, pm(6)[P,(T,; T,, T,) ~-(%+l)  ' 
$(2)(7, 6 ,  To, q, T,) - Ym(T , ,  T,, T2) 

Q2 3 4  + 4(n2 + n -  1) -- (n2 + 8n- 3 )  
4x 

""I m 
Q2 + - ( ( m + 1 ) ( 2 n ) - ( n - l ) -  (e,P,) 
4.n 

Q a K m  (P,, P,)+-(m+ l ) - (O ,Pm) ,  47F 3% 
(3.19) 

where ( f ( 6 ) ,  g ( 6 ) )  is the inner product of these functions weighted with sin 6 on the 
interval [0, n ] ,  and K ,  is an integration constant from (B 9). 

The solvability condition for the equations (3.19) eliminates the secular terms and 
leads to the result 

(3.20) 

or that the modulation functions depend only on T,. The solutions of (3.19), 
determined so that the initial conditions (B lo), (B 1 1 )  and integral constraints (B 5 ) ,  
(B 8 )  are satisfied, are written in the form 

8 

FP)(& T,, T,, T,) = x L,,(T,, T,) p,(@, (3.21) 
$-0 

13 E L M  147 
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where the exact values for the coefficients are tabulated in Appendix B. The 
corrections for q5@) and V ( 2 )  can be expressed in a matrix form similar to (3.21) with 
the elements {$Mzkj(  T,, T,)} and {N2kj(T, ,  T,)/$+l} respectively replacing {L,,,.(T,, T,)}. 
The exact forms of these coefficients are available in Tsamopoulos (1984). 

The dependence of the frequency and amplitude modulations of the slow timescale 
T2 are computed from the solvability conditions of the third-order problem, which 
is listed in Appendix C. The corrections to the shape and the potentials ( F ( " ,  q5(3), V3)) 
are again expanded in Legendre series, and a set of second-order ordinary differential 
equations is derived by the same procedure used to solve the second-order problem 
(for details see Tsamopoulos 1984). The solvability condition for this set dictates that 

(3.22) 

so that the amplitude of the oscillation is not modulated up to O(e2)  ; the (c ,}  are taken 
to  be unity to satisfy the initial condition (3.17). Solvability also requires that the 
frequency modulation takes the form 

4 

A , j @  
8 j-0 h,(T,) = -__ T, for n = 2, 

245 w ~ w : ( w : - ~ w ~ )  

6 

C A3j@ 
T, forn = 3, 288 j = O  

1101 1 w3 u;w:u,"(w; - 44) (w; - 4 4 )  
h,(T2) = -- 

(3.23 a) 

(3.23b) 

R 

2 A4j@' 
T,  forn = 4, (3 .23~)  2488320 =O 

h4(T,) = -2433431 W ; W ~ W ~ ~ O ~ ( U ; - ~ U ~ )  ( 4 - 4 4 )  ( 4 - 4 w i )  

where Q^ = Q2/4n, and the coefficients {Aij}  are listed in Appendix C. Because there 
can be no dependence on the frequency modulation on any odd powers of the 
amplitude, the results (3.23) are accurate up to O(e4). For values of Q  ̂ in the range 
0 < Q^ < 4, the drop oscillates stably and both h2(T2) and h3(T,) remain negative. The 
frequency modulation h4(T,) for the four-lobed oscillation is positive in the region 
2.3 < Q^ < 0 and is infinite at Q  ̂ = t .  At this value of the net charge the four-lobed 
motion resonates with six-lobed oscillations and the scalings for the modulation 
functions derived in this section are no longer valid. The proper analysis close to this 
resonant point is described in $4. 

= 0 differ slightly from 
the results in I because of the algebraic error mentioned above. The results for the 
uncharged oscillating bubble given by equations (59)-(61) in I should be corrected to 

w ( ~ )  G h 2 2  ( T )  = 15435 NN - 1.52569w(O) fern = 2 ,  (3.244 

d2) = h 3 2  ( T )  = - ~ ~ ~ ~ ~ t ~ d o )  z -2.30459dO) (3.24 6 )  

~ ( 2 )  ( 3 .24~)  

These corrections improve the agreement between the calculations and the experi- 
ments of Trinh, Zwern & Wang (1982) shown in figure 4 of I. 

The frequency modulations given by (3.23) in the limit 

forn = 3, 

h 4 2  (T ) = - 14775015009 4939864930 ~ ( 0 )  x - 2.99098~(0) for n = 4. 
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4. Second harmonic resonance 
The regular forms of the weakly nonlinear oscillations described in $ 3  are not valid 

when the frequencies of the higher harmonics of the fundamental mode are close to 
integral multiples of its frequency. This does not occur for uncharged drops up to  
second order in amplitude, but happens for charged drops that satisfy the condition 

m(m- 1 )  (m+2-Q2(4.n)-1) 
= integer2, m + n. (4.1) (4 

For the two- and three-lobed modes of oscillation, the values of Q required for 
resonance are above the Rayleigh limit for electrostatic bursting. Resonance is 
detectable for four-lobed oscillations when the net charge is near Q, = (YE)$ < Q,, 
where w: = 44. Then the four-lobed fundamental resonates with the six-lobed form, 
and the two modes exchange energy in a periodic or aperiodic fashion, depending on 
the initial deformation of the drop. 

I n  the remainder of this section we analyse this second harmonic resonance. The 
analysis used here parallels the work of McGoldrick ( 1972) for capillary-gravity 
waves. We consider drops with net charge slightly different from Q,, or 

(4.2) 

where h = O( 1 ) .  The linear oscillation frequencies a t  these values of Q are given by 

w4 = Z d l O ( l - & A € ) ,  (4.3) 

w6 = 4 10 (1 -&he), (4.4) 

The formulation of the linear problem (3.5)-(3.15) for n = 4 is unaffected by the 
possibility of resonance, and, for convenience in subsequent manipulations, its 
solution is written in complex form as 

F(l)(O, T,, T,) = {A(Tl) e-iw4To+ c.c.} e(8), 

V1)(7, 8, T,, T,) = {A(?) e-iwaTo+ c.c.} 4 ( 0 )  7-5, 

(4.5u) 

(4 .5b)  

(4.5c) 

where {c.c.} stands for the complex conjugate of the immediately preceding term. We 
carry our analysis of resonance only to terms O ( E )  ; so to this order of approximation 
the term A(?) will depend on only the single slow timescale Tl. 

The forms of the singularities of the second-order coefficients in the regular 
perturbation when Q is near Q, (e.g. see the coefficients I,, and I,, in (B 13)) suggests 
that the first-order solution be modified to include a second harmonic constituent 
(n = 6). This new mode may not be present initially ( t  = 0), but will be excited 
through the resonance with the existing fundamental (n  = 4).  We write the more 
general O ( E )  solution as 

( 4 . 6 ~ )  

+(-Biw6B(T,)e-i"eTo+c.c.}P,(#)76, (4 .6b)  

@')(y,8, T,, T,) = ( - ~ i o 4 A ( T , ) e - i w 4 T ~ + c . c . ) ~ ( e ) ~ 4 ,  

F(l)(e, T,, Tl) = {A(?) ePiW 4 O + C . C . } P ~ ( ~ ) + { B ( T , ) ~ - ~ ~ ~ ~ O + ~ . ~ . } P ~ ( ~ ) ,  

$(')(q, 8, To, Tl) = {-~iw4A(T,)e-'wnTo+c.c.}P4(8)~4 

Vc ' ) (~ ,8 ,To ,T l )  = {A(Tl)e-iw4To+cC.~.}P4(8)&~-5 
+ (B(T,) e- iWgTo + c.c.) P,(@ Q7-'. ( 4 . 6 ~ )  

13-2 
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The dependence of the net charge on the amplitude through (4.2) introduces new 
terms into the non-homogenous parts of (B 4) and (B 9). These terms are, for (B 4), 

and, for (B 9), 

Introducing the generalized solutions (4.6) into the modified form of the second-order 
problem and following the same procedure outlined in $3 leads to a second-order 
differential equation like (3.19). Eliminating secular terms from this equation requires 
setting to  zero the coefficients multiplying not only the terms exp ( iw,T,) and 
exp ( f iw6To) that resonate exactly, but also those coefficients multiplied by 
exp ( f 2iw, T,) and exp ( i- i(w, - 0,) T,) that  nearly resonate because 

20,T, (w6 - N E )  T, = w6T,  - NT,, (4.9a) 

(us - w4) T, (0, + N E )  T, = o,T, + NT,, (4.9b) 

where N = $A 10. Thus the differences between these two frequencies and the 
fundamental n = 4 and n = 6 modes differ only in the slow timescale TI. Thc 
solvability conditions that result from removing these secular terms are 

a2(@-a4iB) = iA2eiNT1, 

( 4 . 1 0 ~ )  

(4.10b) 

where a 1 = - 143 267 d&, a2 = gd&, a3 = A d& and a, = qh d&. Equations similar to 
(4.10) were first derived by Bretherton (1964) for planar water waves. I n  Ss4.1 and 
4.2 we consider separately the cases of exact resonance ( A  = 0) and the detuning 
caused by a slight variation in Q from Q,  (A -+ 0). 

4.1. Exact resonance 

Introducing the substitutions A(T,) = r l ( q )  eiol(Tl) and B(T,) = r2 (T , )  eiS2(T1), where 
the {r i ,  Si} are real functions of the slow timescale, reduces (4.10) to  

(4.1 1 a,b)  

dB 
'dT1 'dT, (4.1 1 c, d )  dB1 - 

ct r - - r1r2  cos8, a r 2 = r: cos8, 

where 6 = 02-28,. Just  as for the modulation equations arising for planar water 
waves (Benney 1962), the first two relations (4.1 1 a, b)  have an energy-like integral 

a,r;+u2r,2 = E,  (4.12) 

where E is proportional to the 0 ( s 2 )  energy carried in the system. The functions r l ( q ) ,  
r 2 ( q )  and the relative phase &T,) are, from (4.11), related by 

rir2 cos 8 = L, (4.13) 



Resonant oscillations 

FIGIJRE I .  Phase-plane plots of the fundamental (a) and the 
resonating mode (b) with A = (Yn):. 

where L. is a constant. Using (4.12) and (4.13), the set (4.11) is decoupled into the 
form 

( 4 . 1 4 ~ )  

(4.14b) 

( 4 . 1 4 ~ )  

The third-order polynomial in r i  on the right-hand side of ( 4 . 1 4 ~ )  has three real 
roots {pi} which satisfy the inequalities 

- E/3o1, < p, < 0 d p2 d 2E/3a, d p3 < E/a,. 

The solutions of (4.14) are expressed as 

r?(T1) = p3+@2-p3) sn2 ( 7 ;  '), ( 4 . 1 5 ~ )  

(4.15b) 

( 4 . 1 5 ~ )  

(4.15d) 

where sn is Jacobi's elliptic function and 17 is the incomplete elliptic integral of 
the third kind (Abramowitz & Stegun 1964) with 7 = [(p,-p,)/(ala,)]~Tl and 
k = (p, -p2)/(p3-pl). The first-order solution (4b)  then consists of periodic amplitude 
modulations between the two largest roots (p2, p3 )  together with periodic phase 
modulations of the same period superimposed on a slow linear frequency shift on the 
slow timescale, which is similar to the 0 ( e 2 )  Poincar6 correction to the frequency for 
regular oscillations. 

Phase-plane plots for the amplitudes of the two modes are shown in figure 1 .  
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FIGCEE 2 .  Shapes of drops initially perturbed by an  n = 4 mode with Q = (?@)* and B = 0.2. 
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Time measured as 7 = tw4/27r 

FIGURE 3. Aperiodic modulation of the amplitude of the fundamental and the 
resonating mode with Q = (%$); and e = 0.2. 

For initial conditions such that IJ = 0, the individual phases of the two interacting 
modes are constant ,and the modal amplitudes follow the outermost trajectory in 
figure 1 .  Then the initial condition corresponds to purely four-lobed deformation 
(r,(O) = R,, r,(O) = O ) ,  and the general solution (4.15) simplifies to 

(4.16a) 

(4.16b) 

8,-28, = +in .  ( 4 . 1 6 ~ )  

At exact resonance a purely four-lobed oscillation of any amplitude cannot persist, 
but transforms into a six-lobed oscillation within less than three periods of the 
initially excited mode. Drop shapes for this case are shown in figure 2 for the initial 
phase conditions 8,(0) = 0 and 02(0) = in  with E = 0.2. 

The amplitudes of the interacting four- and six-lobed modes are given in figure 3 
as functions of time for the same conditions used to calculate the drop shapes in 
figure 2. When E = 0.2 the n = 4 mode has decreased to 71.6 yo of its maximum value 
and the n = 6 mode has reached 69.8 yo of its maximum value within one oscillation 
cycle. The corresponding percentages after three cycles are 14.9 yo and 98.9 yo for the 
n = 4 and n = 6 modes respectively. Because of this transient in the O ( E )  solution, 
the complete solution of the second-order problem will initially have terms propor- 
tional to the n = 2 , 4 , 6  and 8 Legendre modes, but after about three cycles the shape 
will have significant components from n = 10 and n = 12 modes. 

The inner trajectories in figure 1 correspond to initial conditions such that 
0 < L2 < 4E3/27a: a2 3 L& for which the disturbances are combinations offour- and 
six-lobed shapes with continuous modulations of both amplitude and phase. These 
deformations continuously exchange energy during oscillations a t  a frequency which 
is slightly modulated about the mean value. The relative phase 6i between these modes 
always falls between -$ < -6im < 8 < 6im < in ,  where Qm = c0s-l (LIL,). This 
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phase is maximum when the amplitudes are undergoing maximum growth 
(a,.: = 2a2r3 ,  and is zero when the rate of change of the amplitudes is zero. 

The timescale for these resonant oscillations is understood by considering the case 
L2 = iLLax. If the initial amplitude of the deformation is taken as E = 0.2, one full 
cycle of the energy exchange between the four- and six-lobed modes occurs in 

w4( _ _ _  ala2 >: z:----- 0.7 
cycles for the n = 4 fundamental oscillation. This implies that  the time for the 
resonant interaction is inversely proportional to  the square root of the total energy 
input E or the initial amplitude E of the oscillations. 

For initial conditionssuch that L = L,,,, both the amplitude and phase modulations 
present for 0 < L < L,,, vanish entirely and the timescale of the resonant 
interaction between the n = 4 and n = 6 modes has dropped to zero. The trajectories 
for this initial condition are represented by the single point on each of the phase-plane 
plots shown in figure 1 .  The general solution of the modulation equations (4.15) 
reduces in this case to 

1" 2 1 1  y2 = a 2 2 - 3  y2 - LE (4.17a) 

P3-Pl  

20, = 0, = k ( - ) * r l q ,  2 l  

"1 " 2  

(4.17 b )  

where we have assumed Bl(0) = 0. 

4.2. Oscillations near resonance 
Variations in the oscillation frequencies of the four- and six-lobed motions caused by 
the dependence of these frequencies on the amplitude and small differences between 
the true net charge and the value Q, will detune the resonance. The effect of this 
detuning on the drop motion is considered by analysing (4.10) with A =+ 0. With the 
substitution 

W(T,) G iA*2Be-iNT1 (4.18) 

(4.10) are reduced to 

d d 
a,-(AA*) = -a2-(BB*) = 2Re(W): 

dT1 dT, 
(4.19) 

so that an integral quantity analogous to E in (4.12) is defined as 

E = a1 AA*+a2 BB*, (4.20) 

and is independent of the detuning parameter A, which appears only in the coefficients 
a3 and a4. To derive a condition equivalent t o  (4.13) we introduce a real-valued 
function 

Z ( T , )  al(R;-AA*) G a2(BB*-R;), (4.21) 

where R, and R, are the moduli of the initial amplitudes of the n = 4 and n = 6 modes 
respectively. Substituting (4.18) and (4.21) into the set (4.10) leads to the second 
integral 

(2a3-a4+N)Z-2L = 2Im(W).  (4.22) 
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Detuning parameter measured as u = a, (a2/E)t'fi 
FIQURE 4. Response of the amplitude of the second harmonic near resonance 

as a function of the detuning parameter N .  

Combining (4.18)-(4.22) gives the general equation 

which can be integrated in terms of elliptic integrals. 
We consider the solution of (4.23) only in the case when the initial condition is 

composed of only the fundamental mode (R, = 0). For this situation it is easily shown 
that W ( 0 )  = Z ( 0 )  = L = 0, E = a1 R:, and (4.23) reduces to 

(4.24) 

where fl = ;(2a, - a4 + N )  ; this constant is somewhat different from the one derived 
for planar waves by McGoldrick (1972) because of the existence of the linear terms 
in (4.10). The quadratic polynomial in Z in (4.24) has two distinct positive roots, 
0 < p1 < E < p,, if I? + 0 or two roots equal to Eif  fl + 0. This latter case corresponds 
to the situation a t  exact resonance ( A  = 0 )  and (4.24) can be easily integrated to yield 

(4.25) 

which when combined with the definition (4.21) can be reduced to  a form similar to 
(4.16). The initial value Z(0) is equal to E and is the maximum value of the four-lobed 
component of the oscillation. 

When detuning occurs 3 is not zero and the general solution of (4.24) is an 
oscillation of finite period with value between the smaller root of (4.24) 

(4.26) 

and zero. The root p1 is the largest value of Z obtained during the detuned oscillations. 
The effect of detuning on the energy transfer between the initial fundamental (n = 4) 
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and the second harmonic (n  = 6)  is shown in figure 4 by a plot of the maximum 
amplitude of the six-lobed component as a function of flwhich measures the variation 
of Q from Q,. The amplitude of the n = 6 component is scaled with its asymptotic 
value (E/a2)$ for exact resonance. The ability of the resonant mechanism to transfer 
energy between the fundamental and its second harmonic decreases as 8-1 or A- l .  
As this plot indicates there is a band of frequencies and therefore electric charges near 
Q, for which the resonant interaction is most effective. 

5. Third harmonic resonance 
Resonance between the fundamental mode and one of its third-order harmonics 

occurs for charged drops a t  particular values of Q. I n  particular, the fundamental 
two-lobed motion resonates with its four-lobed harmonic for Q = 0, i.e. for uncharged 
inviscid drops. Also, the n = 3 fundamental and its n = 5 harmonic resonate a t  
Q = fez); and the n = 4 fundamental and its n = 8 harmonic do so a t  Q = (En):. In  
each case the O(e)  solution F ( l ) ( % , q , q )  must be taken to be a combination of 
the fundamental and resonant harmonic modes and the amplitude modulations 
(corresponding to A(T,, T,) and B ( q ,  T,)  in (4.6)) determined from the solvability of 
the second- and third-order problems. The solvability condition at 0 ( e 2 )  will 
guarantee that the amplitude modulations are only functions of the slowest timescale 
T,, and the conditions a t  0 ( e 3 )  give equations like (4.10) which govern A(T,) and B(T2). 
The derivation of these equations and their solution will be tedious, as suggested by 
the form of the third-order problem far from resonance given in Appendix C. We have 
not pursued this work; see McGoldrick (1972) and Nayfeh (1971) for the parallel 
analysis for capillary-gravity waves. McGoldrick et al. (1966) have also observed these 
third-order interactions experimentally. 

The third harmonic resonance for an  uncharged drop set into motion from an initial 
deformation with components of both the n = 2 fundamental and n = 4 harmonic 
modes will appear as a continuous and periodic modulation of amplitude for these 
modes in time with a frequency which is proportional to e2. For the case of E = 0.2 
discussed earlier, this scaling implies that  O( 10) oscillation cycles of the fundamental 
frequency will be needed to observe the resonant energy exchange. 

6. Discussion 
Moderate-amplitude oscillations of inviscid charged drops display an array of 

nonlinear dynamic phenomena as varied as those that have been observed for nearly 
planar water waves. Besides a decrease in oscillation frequency with amplitude caused 
by interactions between the fluid inertia and drop shape, resonant interactions 
between the fundamental mode and secondary and tertiary harmonics can com- 
pletely change the pattern of the oscillation. I n  terms of the classifications used by 
McGoldrick (1972), these resonances are selective and weak. They are selective in that 
only particular combinations of the fundamental and its harmonic can resonate a t  
particular values of the electrical charge Q. They are weak because the timescale for 
the resonant interaction is long when compared with a typical period for the 
fundamental oscillation. 

The analysis presented in 94 for the second harmonic resonance of a four-lobed 
oscillation for Q = Q, shows three particular forms for this long-timescale response, 
depending on the initial deformation of the drop. An aperiodic drop motion is only 
possible when the initial deformation is composed of the fundamental n = 4 mode 
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alone. Small changes in frequency caused by variation in Q from Q, and oscillation 
amplitude detune the resonance so that the actual motion described a time-periodic 
exchange of energy between the n = 4 mode and its n = 6 harmonic. This type of 
periodic exchange occurs for more general initial deformations which include both 
modes and are accompanied by small frequency modulations about the mean. 

For either of these periodic and aperiodic motions the oscillation pattern is distinct 
from the form valid far from resonance. In  both cases, the amplitude of the harmonic 
mode has magnitude similar to the fundamental for the initial part of the motion. 
This change in pattern should be observable in calculations and experiments so long 
as data is collected for a period comparable to the long timescale. We feel that  the 
second-harmonic resonance described in $4 will be easily observed, but that some of 
the cases of tertiary resonance described in $ 5  will be more difficult. The third type 
of resonant oscillation is strictly periodic with constant amplitude and phase, but is 
the most unlikely to be observed because of the precise ratio of initial amplitudes 
required. 

Predictions of experimental observation of these three types of resonance must take 
into account the effects of the omnipresent viscosity of real drops, which will detune 
the interactions and cause damping. The quantitative effects of this detuning are 
difficult to calculate rigorously ; however, its qualitative significance can be estimated 
from simple approximate calculations. Prosperetti (1980) has shown that the 
damping of small-amplitude oscillations of a viscous drop is governed by an 
integrodifferential equation which reduces to  Lamb's (1932, $305) theory for a drop 
with small viscosity at short times when the initial disturbance is irrotational. For 
the resonant interactions predicted by the inviscid analysis to be observed in slightly 
viscous drops, the timescale for viscous dissipation, or equivalently of vorticity 
diffusion from the interface, must be much longer than the characteristic time for 

where n is the primary mode of the oscillation. This condition is satisfied for water 
drops with n up to eight. 

When there are a number of small-amplitude modes of the form given in (4.6), the 
orthogonality between each component guarantees that, within the order of 
approximation, each mode decays independently of the others. When the rate of 
energy transfer between resonantly coupled modes is independent of the viscosity, 
the amplitude equations for exact second-order resonance are modified to  account 
for viscous damping and give 

(6.2a,b) 

The effect of viscosity on the resonant interactions of internal waves (Davis & Acrivos 
1967) and capillary waves (McGoldrick 1970) have been derived using similar 
arguments. McGoldrick analysed the equivalent set of spatial equations in the (A, B )  
phase plane as a function of initial conditions. 

Comparing (6.2) with (4.10) shows that the principal effect of a slight viscosity is 
to attenuate the two interacting modes at the same decay rates present in the absence 
of their interaction. Because the timescale for third-order resonance (uncharged 
drops) is an order of magnitude greater than the one discussed above, it is more 
comparable to the viscous timescale. As a result, thcse interactions will be more 
difficult to observe experimentally. 
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The experimental systems presently in use rely on acoustic pressure (Jacobi et al. 
1981) or electric fields (Davis & Ray 1980) to position the drop. The acoustic field 
forces the drop to oscillate, and opens the possibility of parametrically excited 
oscillations. Levitation of a charged drop in a d.c. electric field allows the determi- 
nation of the net charge, but deforms the drop and changes the oscillation frequencies. 
These deformations have recently been calculated for a static drop (Adornato & 
Brown 1983), and are small for the full range of values for the field strength and charge 
accessible before breakup. This suggests that  the oscillation frequencies computed 
for small values of the field by Sample, Raghupathy & Hendricks (1970) are good 
approximations. Resonant oscillations are detuned even for small changes in these 
frequencies. 

All the calculations presented here are restricted to charge values below the 
Rayleigh limit ( 1 . 1 )  for breakup of the spherical form. Introducing oscillation will 
interact with this limit, thus causing the drop to become unstable a t  lower values 
of the charge. The variation of the critical value of Q with the amplitude of the 
oscillation will be considered later. 

This research was supported by the Fluid Mechanics Program of the National 
Science Foundation. The authors are grateful to T. R .  Akylas for valuable 
discussions. 

Appendix A 
The mean curvature 2% and normal tangent vectors are expanded in e as 

m 

-2% = 2 + €  z ( i - l ) ( i+2)F! l )  
i - 2  

m 

(j-1) (j+2)Fj2)-4 z ( i 2 + i - l )  (F!1))2} 
j = O  i = 2  
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CrJ 

=-  (m-1)(m+2)F(2)+4(F(1))2(~2+~-1) ( q =  1, 0 < 8 < ~ ) ,  (B4) 
m=o 

joH (2 (P(1 ) )2  +W)) sin 8 d8 = 0, 

- Q ( O )  s‘ [2F@) + 2(F(l))2 + (Fb,1))2] sin 8 d8 = 0 (7 = l ) ,  (B 8) 
0 

2FQ;+EI(T2; = 0 (T, = q = 3 = 0).  (B 11) 
The non-zero coefficients in the second-order correction (3.21) to drop shape are 

L,,, = -$ (308’ $,, 
L,,, = -G,COS ( W ~ T , + ~ ? Z ( G , , C O S ~ ~ - , + G , , ) ,  
L,,, = -$G, COSW,T,+$$(G,, C O S ~ $ , + G , , ) ,  
L,,, = -$ COS2 $,, 
L,,, = - H ,  cos w2T0 + &(HZ1 cos 2@, + H,,), 
L2,, = -SH,COSW,T,+*(H,, C O S ~ $ , + H , , ) ,  
L,,, = - t H ,  cos w,T, + +(H6’ cos 2$, + H6%),  
L,,, = -$COS211’,, 

4 4 ,  = -1, cos w z q  +&(I21 cos 211’4 + 1 2 2 1 ,  

L,,, = - : I , c o s w , T , + ~ ( I , ,  C O S ~ @ , + I , , ) ,  

L,,, = -;I, cosw,T,+&(l,, cos2$,+ I,,), 

L,,, = -$I8 cos w,T, + m ( I E l  cos 2$, + I , , ) ,  
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, G4 = %(Gd1+ 9@ + 54@- 648 15@ - 258@+ 1080 
(w; - 4 4 )  flJ; G = -  , G42 = 

41  (w;-4w;)w; 

with 0 = Q2/4x. 

Appendix C 
The equations that govern the third-order problem are 

2 ( 3 ) - 0  ( o q ~ i ,  o e o ) ,  v ,  - 

$75:) = 0 (7 = 0, 0 d 8 d Tc), 

113) 
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The coefficients in the frequency corrections (3.23) are 

L = 2  L = 3  1=4 

6 608 528 4214241024000 55 735591 155609600 

1419804 1682216 124000 45 351 373 91 2 3493 12 

7 945 43303979512 2 840 187292 166640 
- 345 863 703 031 648 

- 66 094 72 1 25619763 735024 
- 1049270 108016 

18006768899 

- 4961 440 - 4 128 178 176000 - 77 949491 906 388480 

- 177 168 -362825358328 - 14555386948486656 

- -2679419780 

- - 

- - 
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